Autotasking STAGE-2

Robert]. Bergeron!

Report RND-92-014 July 1992

NAS Systems Development Branch
NAS Systems Division
NASA Ames Research Center
Mail Stop 258-6
Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035-1000

Autotasking STAGE-2

Robert J. Bergeron
Computer Sciences Corporation
NASA Ames Research Center
Moffett Field, CA 94035, USA

Abstract

This paper presents Cray Y-MP performance results for a parallel version of a
two-dimensional CFD code, STAGE-2. The Cray autotasker combined with
minimal user effort produced a 91% parallel code displaying a fivefold
increase in performance on 8 CPUs. The high level decomposition implicit in
the code formulation facilitated the generation of autotasked code.
Examination of STAGE-2 parallel performance indicates that two factors limit
the current version: the load imbalance in the block solver and the intensity
of memory traffic in the implicit solution subroutines.

1.0 Introduction

This report discusses performance results obtained by using Cray's automatic
preprocessor to create a parallel version of the CFD code STAGE-2 (Gundy et
al., 1989). This effort is part of a larger effort to create a suite of codes for
testing automatic parallelization. Tools for automatic parallelization of
application codes fit into two categories: low-level tools which exploit
machine architectural characteristics and high-level tools which exploit
algorithmic parallelism. This report describes results obtained with a low-
level tool, FPP, which exploits high speed registers to achieve parallelism at
the DO loop level. Test suite ground rules currently limit manual
restructuring of the code to inserting parallel directives and rearranging some
DO loops. Future application of high-level tools to codes in the suite may
require a relaxation of these ground rules. The following paragraphs discuss
salient features of the Cray autotasker and the measurement of parallel
performance.

The Cray Y-MP is a shared memory multiprocessor, and high speed registers
shared among all the CPUs transmit the status of arithmetic operations for
CPU synchronization. Cray's implementation of automatic parallel
processing employs these high speed shared registers to assist in the parallel
execution of FORTRAN DO loops. For scientific and engineering applications,
the DO loops will contain most of the computation and since individual '
iterations of such DO loops tend to contain an equal amount of calculation,
emphasis on DO loops assists in load balancing. Implicit synchronization
occurs at the end of all autotasked DO loops.

Loop-level parallel processing requires compiler directives. Autotasking is
the automatic insertion of the directives by a preprocessor; microtasking is the
insertion of equivalent loop-level directives by the user (Cray, 1988). Cray
terms the autotasking preprocessor FPP (FORTRAN PreProcessor) and the
microtasking preprocessor FMP (FORTRAN MidProcessor). Directives tell the
compiler which memory locations can be shared by all processors executing
the parallel job and which memory locations must belong to the individual
processors of the parallel job. Directives also specify the distribution of
parallel work to the processors.

FPP directives (statements beginning with CFPP$) allow the user to improve
the dependency analysis performed by the autotasker. FMP directives
(statements beginning with CMIC$) allow users to either perform their own
dependency analysis or to override the FPP dependency analysis. The user
typically invokes FPP to insert the parallel directives into the code with the
type and location of these directives being determined by FPP's dependency
analysis. The user then supplies the modified code to FMP for translation into
parallel library calls and autotasking intrinsic functions. Finally, the user
provides the FMP-modified code to the compiler for object code generation.

The figure of merit for parallel performance is speedup, defined as the ratio
of the elapsed time for the code executing on 1 CPU to the elapsed time for the
code executing on a specific number of CPUs. Except where stated, the specific
number of CPUs in this report is 8. The ultimate test of an automatic
parallelization tool is the performance of the code generated by the tool. On a
vector machine, however, a tool can generate code which is highly parallel
(meaning that the generated code executing on multiple CPUs displays high
performance relative to the same code executing on a single CPU) and still
not take advantage of the vector registers. In such a case, the algorithm may
be ill-suited for parallel processing, but the tool may be performing quite well.
Thus, in addition to speedup, this report will refer to the fraction of parallel
code. The fraction of parallel code is equal to 1-f where f, the serial fraction, is
defined implicitly as (Karp and Flatt, 1989):

T(p) = T(yf + —

where T(p) denotes the elapsed time on p processors and T(1) denotes the
elapsed time on one processor. This report will provide measured single and
multiple processor elapsed times and the above formula will allow
calculation of the parallel code fraction.

A predictive tool, ATEXPERT (Cray, 1991) provides estimates of autotasking
performance gains at the program, subroutine, and loop level. This tool
records the distribution of parallel work to various numbers of processors and
employs a simple model to extrapolate wall-clock times. The tool can run in
the normal workload to estimate the effects of FPP directives upon parallel
performance during dedicated time. The report shows some tables and graphs
from this tool.

Section 2 of this report briefly discusses the physical problem modelled by
STAGE-2 and Section 3 briefly explains the numerical approach employed in
the code to solve the governing equations. Section 4 provides singletasked
performance data while Section 5 provides the parallel performance obtained
by autotasking. Section 6 discusses features in the code design which promote
and inhibit parallelization and also projects some characteristics of a more
parallel version of STAGE-2. Section 7 provides concluding remarks.

2.0 The Physical Problem

STAGE-2 describes the two-dimensional fluid flow around rotor/stator
elements in a multistage compressor. The design generally consists of rows of
multiple closely-packed rotor/stator airfoil pairs with each rotor moving
relative to its stator. Although measured Mach numbers of 0.15 indicate an
almost incompressible flow, the geometry leads to strong viscous effects
including wake interference, vortex shedding, and flow separation. The
relative motion between rotor and stator promotes an unsteady flow.

3.0 The Numerical Approach

A single grid treatment of the flow field in the rotor/stator geometry would
require a highly skewed mesh since the close packing of the airfoils produces
many regions where the dependent variables and their gradients change
rapidly. Modern CFD codes employ a system of overlaid and patched grids of
varying sizes to provide accurate multiregion solutions within a reasonable
period of time. Such codes generally visit each grid serially, solving the
relevant equations and exchanging the appropriate boundary conditions at
the end of each iteration. STAGE-2 employs this approach, treating the
compressor as two regions, an inner zone where viscous effects are important
and an outer zone where viscous effects can be neglected. In the inner zones
near the airfoil surfaces, STAGE-2 uses thin-layer Navier-Stokes equations. In
the outer zones corresponding to regions far away from surfaces, the code
neglects viscous effects and employs the Euler equations.

Modelling of the above flow system involves the motion of one grid relative
to another with the attendant requirement that information be passed across
the interface in a time-accurate manner. The discussion below will show that
the STAGE-2 formulation avoids much of the indirect addressing that can
characterize other systems, e. g., unstructured grids. Simplicity of array
subscripting facilitates autotasking dependency analysis.

Application of a fully implicit, finite-difference method to the governing
equations produces a nonlinear set of equations which would require
expensive iterative techniques for solution. Linearization of the fluxes yields
a system which can be solved, albeit expensively, with a block matrix solver.
Further refinement of the system through an approximate factorization
technique results in a system much more amenable to block matrix solution.

However, the factorization introduces an error which requires a small
number of iterations during each timestep to ensure convergence.

4.0 The Computational Implementation

The main loop of STAGE-2 consists of an outer loop performing the
Newton-Raphson iteration to obtain convergence during the time step. The
inner loop visits each of the two-dimensional grids to provide explicit and
implicit contributions to the fluxes. For outer grids which model regions far
away from surfaces, the code computes only inviscid contributions to the
fluxes. For inner grids, the code computes viscous and inviscid contributions
to the fluxes. After assembling all flux terms for a given grid, the code calls
the block-solver. Upon conclusion of the inner loop, the code applies the
proper boundary equations for each grid and begins another pass of the
Newton-Raphson iteration. This version of the code performs three
iterations before advancing the timestep.

The sample problem models 12 grids, 6 inner and 6 outer, for a total of
850,768 points. The problem executes 10 timesteps, which is typically sufficient
to obtain an initial convergence of time-averaged quantities; final
convergence may require a factor of 10 more computation. The 10-timestep
problem requires 456 Y-MP CPU seconds.

The table below provides a Cray PERFTRACE breakdown for the sample
problem. The table shows subroutine name, CPU time spent in the routine,
percentage of CPU time, subroutine MFLOPS, and comments. The table list
subroutines in order of decreasing CPU time.

TABLE 1. STAGE-2 Subroutine Performance

ROUTINE CPU Time

Percent MFLOPS Comments

FLUX 1.28E+02
BTRI 9.48E+01
SMATRX 8.03E+01
LHSO 2.29E+01
LHSI 1.83E+01
MUTUR 1.48E+01
VMAT 1.46E+01
RHSO 1.33E+01
CONTROL 1.23E+01
GETQ 1.21E+01
RHSI 1.17E+01
VRHS 6.14E+00

GETOLD 5.17E+00
MUKIN 4.64E+00
EIGEN 3.58E+00
PUTQ 3.29E+00
CONVRG 2.84E+00
METRIC 2.11E+00

DATA 1.13E+00
GETXY 1.09E+00
PUTOLD 1.09E+00
PATCH 4.85E-01
CORRECT 2.89E-01
INITIA 2.11E-01
INTRP 5.62E-02
PUTXY 2.48E-02

HISAVG 1.46E-02
OUTPUT 1.42E-02
HISTIM 2.82E-03
GETSTR 1.04E-04
MATCH 8.75E-05
STAGE-2 5.23E-05
REDWRT 2.38E-05
CHECK 8.15E-06
TOTALS 4.56E+02

28.2
20.8
17.6
5.0
4.0
3.3
3.2
29
27
27
2.6
13
1.1
1.0
0.8
0.7
0.6
0.5
0.2
0.2
0.2
0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
100

199
202
214
60
59
103
117
169
85
0
156
185
0
186
191
0
6
227
2
0
0
32
43
43
99
0
186
9
191
0
39
0
0
4
167

Osher fluxes

Block solver

Calculate matrix terms
Outer zone implicit terms
Inner zone implicit terms
Eddy viscosity

Add viscous terms
Explicit terms

Main timestep iteration
Array-filler

Explicit terms

Viscous terms explicit
Array-filler

Viscous terms
Timestep calculation
Array-filler
Convergence check
Transformation metrics
Data readin

Array-filler

Array-filler

Grid condition transfer
Boundary conditions
Initialization of variables
Transfer grid conditions
Array-filler

Save history

Provides output

Save history

File verification
Inter-zone geometry
Main program

I/0 for plotting

Input checker

The code executes the 73 MW sample problem at 165 MFLOPS with 96% of
its operations being vectorized. The high performance makes STAGE-2 a good
candidate for a performance gain through parallelism since the compiler is
able to vectorize many of the computationally intensive loops. The Cray
autotasker should be able to distribute DO loop iterations to available

processors to decrease elapsed time. If 96% of the operations (all of the vector
operations) can be executed in parallel, application of Amdahl’s law for
parallelism (Section 1) indicates a maximum 8-CPU speedup of 6.25

STAGE-2 spends 92% of its time in 12 subroutines which each exceed 1% of
the total CPU time. This coarseness assists in identifying the routines
important for parallelization.

5.0 Autotasking the code

Autotasking the code involved examining each subroutine which
consumed more than 1% of the CPU time, as provided by the PERFTRACE
output. The first step involved obtaining an understanding of parallel
performance with no user-supplied directives. Previous experience with
autotasking had indicated that automatic inlining and inclusion of inner
loops for autotasking provided the most effective options.

The CRAY utility, ATEXPERT, can predict dedicated performance speedups
for various numbers of CPUs. Briefly, ATEXPERT inserts timing statements
to record the wall-clock time spent in serial and parallel portions of the code.
For a subroutine, the fraction of parallel code is the ratio of the total time
required to execute the parallel portion in singletasked mode divided by the
time required to execute the entire subroutine (serial and parallel) in
singletasked mode. This estimate is the maximum fraction since it excludes
any overhead due to parallel execution. Dedicated time speedups for parallel
regions are based upon the maximum parallel fraction and minimum wall-
clock times measured for these regions in the batch runs. Since ATEXPERT
employs the wall-clock time in a loaded system to estimate the wall-clock
time in a dedicated system, variations in the system load can lead to
variations in ATEXPERT-predicted speedups. ATEXPERT predicted the
following dedicated speedups for STAGE-2:

TABLE 2. Initial ATEXPERT-predicted Speedups (with -ei6 option)

SUBROUTINE SPEEDUP
FLUX 7.94
BTRI 3.74
SMATRX 7.97
LHSO 4.65
LHSI 5.78
MUTUR 1.01
VMAT 1.77
RHSO 2.25
CONTROL 2.22
GETQ 7.13
RHSI 1.65
VRHS 1.59
GETOLD 7.38
MUKIN 7.92
EIGEN 4.22
PUTQ 7.84
CONVRG 1.00
METRIC 7.26
DATA 1.00
GETXY 7.86
PUTOLD 7.92
PATCH 1.40
CORRECT 1.37
INITIA 7.78
INTRP 1.00
PUTXY 1.09
HISAVG 2.84
OUTPUT 1.00
HISTIM 1.50
GETSTR 1.00
MATCH 1.35
STAGE-2 1.00
REDWRT 0.19
CHECK 1.00
ENTIRE PROGRAM 3.09

The 8-CPU speedup of 3.09 is measured relative to execution to ATEXPERT’s
estimate of the singletasked execution in dedicated mode.
Amdahl’s law for parallelism indicates that the autotasker was able to create a
code which was 70% parallel.

The initial results seem promising because the autotasker had achieved a
high speedup with default options; the obvious candidate for increased
attention is the block solver BTRI. Other routines meriting attention for
increased parallel performance are LHSO, MUTUR, RHSO, RHSI, VMAT, and
VRHS.

5.1 Autotasking the Solver

Approximate factorization of the STAGE-2 implicit formulation of the
Navier-Stokes equations leads to a block tridiagonal system, composed of 4-
by-4 matrices. The solver applies a lower-upper decomposition to each of the
4-by-4 matrices within the general framework of a block-tridiagonal algorithm
(Pulliam and Chausee, 1981). The factorization requires two sweeps per
region, i.e., one for each direction, and STAGE-2 applies this technique to each
of the 12 two-dimensional regions comprising the entire grid.

The block tridiagonal algorithm is a recursive block Gaussian elimination
algorithm which economizes on both the number of operations required to
solve the system and array storage requirements (Isaacson and Keller, 1969).
Since this algorithm is recursive in only one dimension, the block Gaussian
elimination will vectorize in the opposite dimension. With typical loop
lengths for the STAGE-2 sample problem ranging between 200 and 300, the
block solver BTRI will obtain 200 MFLOPS on the Y-MP. The recursive nature
of the solver, combined with FPP’s constraint to maintain vectorization,
allowed FPP to create a solver which, while vectorizable, was only moderately
parallel. The report will subsequently refer to this version of STAGE-2 as the
Moderately Parallel Vector (MPV) version.

Manual restructuring of the FORTRAN code in BTRI produced a highly
parallel algorithm, but the recursive nature of the block elimination
algorithm prevented vectorization of the inner loops when restructured for
complete parallelism. Moreover, the Cray autotasker simply could not create
a parallel version of the highly parallel solver despite various directives
requesting that it examine only a single outer loop for parallelism and ignore
inner loops. On highly parallel versions of the solver, FPP first optimized the
code for vectorization and then could not parallelize the resulting code. This
vectorization bias will force careful examination of autotasker-produced code
on multiprocessor machines where parallel versions of scalar algorithms may
outperform singletasked vector versions of the same algorithm. An
alternative Cray utility ATSCOPE (Cray, 1991) cast the solver into parallel
form in its first attempt; this utility inserts the directives for parallel
execution without performing optimization of user code. Singletasked test
versions of the highly parallel block solver performed at scalar speeds, but the
parallel version of this algorithm displayed a speedup of 7.25. The
restructured algorithm has the potential for high performance on highly
parallel systems. The report will subsequently refer to this version of STAGE-
2 as the Highly Parallel Scalar (HPS) version.

In general, the autotasker attempts to distribute work performed by each
iteration of the outermost DO loop to each of the processors. High
performance requires that the distributed work be vector in nature. Thus, a
structure promoting efficient autotasking would be:

cmic$ do all parallel...
do 200 no=1,nouter

c
cc vector work in the next loop
c
do 100 ni=1,ninner
100 continue

200 continue
cmic$ end parallel

Three-dimensional codes which apply the block tridiagonal solver to the
entire mesh (as opposed to the STAGE-2 zonal approach) can have another
loop in the structure as in:

cmic$ do all parallel...
do 300 np=1,nplane

C
cc vector work in the next loop
o
do 200 no=1,nouter
C
cc scalar work in the next loop
C
do 100 ni=1,ninner
100 cont inue
200 continue

300 continue
cmic$ end parallel

This structure permits efficient parallel performance (Bailey et al., 1991) since
the work distributed to the processors is vector.

Section 5.4 will describe STAGE-2 parallel performance with the two solvers
described above, the moderately parallel vector (MPV) version created by FPP
and the highly parallel scalar (HPS) version created by rearranging the loops
in the block solver and parallelizing with ATSCOPE.

5.2 Autotasking the Remaining Subroutines
The other subroutines in STAGE-2 required the insertion of preprocessor
directives to allow the autotasker to scope the variable properly or to enable

the autotasker to parallelize a loop in spite of the data relationships it had
recognized as dependencies. The table lists these actions.

10

TABLE 3. Actions Required to Parallelize STAGE-2

SUBROUTINE INTERVENTION
BTRI Modify solver for parallelism and employ FMP
directives (used for the MPV version of STAGE-2).
MUTUR Employ FMP directive on one loop
RHSI Employ FPP directive for scoping and dependency local
variables
Employ FPP directive to assist in dependency analysis for
two loops
Employ FMP directive on one loop
RHSO Employ FPP directive for scoping local variables
Employ FPP directive to assist in dependency analysis for
three loops
VMAT Employ FPP directive for scoping local variables
VRHS Employ FPP directive for scoping local variables

Several of these insertions simply consisted of informing the autotasker that
an array referenced in a parallel structure used values generated only in that
structure. The conservatism required in dependency analyses frequently
necessitates such user directives.

An FMP directive was required to override an FPP error in subroutine
MUTUR. FPP-generated code did not allow proper initialization of a private
array.

About 10% of the parallel structures created by FPP involved run-time
scheduling, i.e., parallel execution of a block of code required satisfaction of an
[F test during program execution. The simple subscripting allowed by the
zonal decomposition allows this fraction to be much lower than the 48%
quoted in a test of parallel compilers (Shen et al., 1990).

5.3 Final Predicted Performance
Insertion of the directives described in the previous section led to improved

dedicated speedups predicted by ATEXPERT. Table 4 lists the predictions and
the asterisks denote those routines which received FPP or FMP directives.

11

TABLE 4. Final ATEXPERT-predicted Speedups (with -ei6 option)

SUBROUTINE SPEEDUP
FLUX 7.89
BTRI 3.50

SMATRX 7.64
LHSO 4.51
LHSI 5.86

MUTUR* 6.90

VMAT* 7.31
RHSO* 7.43

CONTROL 2.36

GETQ 7.85
RHSI* 7.27
VRHS* 7.49
GETOLD 7.92
MUKIN 7.89
EIGEN 4.21
PUTQ 7.85
CONVRG 1.00
METRIC 7.41
DATA 1.00
GETXY 7.84
PUTOLD 7.41
PATCH 1.36
CORRECT 1.37
INITIA 7.87
INTRP 1.00
PUTXY 1.09
HISAVG 2.81
OUTPUT 1.00
HISTIM 1.48

GETSTR 1.00

MATCH 1.28

STAGE-2 1.00

REDWRT 0.10

CHECK 1.00
ENTIRE PROGRAM 5.97

All subroutines receiving increased attention displayed significant increases
in parallel performance. Parallel speedups for nonasterisked subroutines in
Table 4 display speedups which differ from the values in Table 2. ATEXPERT
measures, on a loaded system, the elapsed time required to complete the
parallel regions with various numbers of CPUs; ATEXPERT then applies an

12

extrapolation technique to predict dedicated time speedups. The system load
influences both the number of CPUs given to a parallel job and the elapsed
time required to execute the parallel regions. Since the system load varies
strongly throughout the day, the timing data used by the ATEXPERT
algorithm will vary from one run to another. Thus, the speedups predicted
for various parallel regions will change even though the parallel code
remains unchanged. Additional comments regarding the variation in
ATEXPERT-predicted speedups are provided in another analysis (Stockdale,
1992).

The 8-CPU estimated speedup of 5.97 is measured relative to execution to
ATEXPERT’s estimate of the singletasked execution time in dedicated mode.
Amdahl’s law for parallelism indicates that the user directives allowed the
autotasker to create a code which was 85% parallel.

5.4 Final Measured Performance

Parallel performance for execution on 1 through 8 CPUs was measured in
dedicated time. The figure below compares the speedup of STAGE-2 using the
vector version as the base. The speedup is the ratio of the elapsed time for the
code executing on 1 CPU to the elapsed time for the code executing on a
specific number of CPUs. The figure also provides a plot of the ATEXPERT-
predicted speedups for 1 through 8 CPUs and the speedups extrapolated by
ATEXPERT to 16 CPUs.

STAGE-2 Speedup vs NCPUs

16 —r—T—————————————T—

14 r —a— MPV Version

12 | —e—— ATEXPERT 4

10 .

Speedup
[«]
I

Number of CPUs

13

The Moderately Parallel Vector (MPV) Version curve gives the true speedup
for STAGE-2 because it is measured relative to the original singletasked
version of the code. Data generated for this curve employ the FPP-produced
parallel version of the block tridiagonal solver to define a 1-CPU elapsed time.

Some of the DO loops in parallel regions of the block tridiagonal solver BTRI
have a natural parallelism of 4, i.e., a significant amount of the parallel
calculation occurs in DO loops whose upper index is 4 and this value limits
the number of processors which these sections of code can utilize efficiently.
This limitation contributes to the decrease in slope (efficiency) as the number
of CPUs increases beyond 4. Requests for more than 4 CPUs in BTRI tend to
increase execution time due to the extra computation and synchronization;
this situation is a load imbalance. BTRI's natural parallelism of 4 occurs
because STAGE-2 simultaneously solves 4 equations: conservation of mass,
conservation of momentum (in two dimensions) and conservation of energy.

The measured STAGE-2 speedups were 3.36 for four processors and 5.00 for
eight processors; the corresponding efficiencies were 84%% and 62%. Thus,
execution on a smaller number of additional processors makes better use of
CPU resources. The five-fold speedup on 8 CPUs reflects a code which is 91%
parallel and such performance is quite reasonable for the level of effort
expended (Kohn, 1989).

Task granularity varies between 0.01 and 150 milliseconds; these values are
sufficiently large to amortize synchronization overhead.

For the parallel version, the Cray Hardware Performance Monitor (HPM)
reported that memory conflicts increase linearly with additional CPUs, up to a
value of 16% for execution on 8 CPUs. For comparison, the 8-CPU benchmark
parallel version of ARC3D displays memory contention of 14%.

The figure shows that ATEXPERT-predicted speedups are slightly larger than
those measured for the parallel version. ATEXPERT uses minimum parallel
loop elapsed times to obtain its dedicated time speedup predictions. STAGE-2
DO loops generally use grid dimensions for loop lengths and since these
values remain constant throughout program execution, the constant amount
of work per iteration permits an accurate extrapolation to 8 CPUs.

ATEXPERT allows a closer examination of the sources of poor parallel
performance in STAGE-2. The figure below displays speedups for three key
subroutines of the MPV version of STAGE-2: BTRI, LHSO, and RHSO, as
predicted by ATEXPERT.

14

STAGE-2 Speedups-MPV Version

Speedup
@

Number of CPUs

BTRI is the FPP-produced MPV version of the block tridiagonal solver. The
speedup increases through 5 processors, decreases for 6 and 7 CPUs and
increases to a maximum of 3.5 on 8 CPUs. ATEXPERT predicts decreasing
performance beyond 8 CPUs. This complex behavior is due to construction of
the parallel regions, some having a natural parallelism of 4 and some having
a much larger parallelism. While the actual performance is a blend of the
performance of both types of regions, the BTRI 8-CPU speedup of 3.5 retards
the STAGE-2 parallel performance.

LHSO performs the calculation of the left hand (implicit) side of the
governing equations for the outer grids and RHSO performs the calculation
of the right hand (explicit) side for the outer grids. LHSI and RHSI perform
similar calculations for the inner grids and their performance curves are
similar to LHSO and RHSO.

RHSO displays a near-linear speedup, a 1.27 FLOPS to memory-reference
ratio, and performs at 169 MFLOPS on a single processor. RHSO computes
flux contributions. ATEXPERT indicates that RHSO execution on increasing
numbers of CPUs will suffer from memory contention and such contention is
a source of RHSO’s small departure from linear speedup.

LHSO displays an asymptotic speedup of 5.0, a FLOPS to memory-reference
ratio of 0.31, and a performance of 60 MFLOPS on a single CPU. LHSO
performs the data movement required to cast the left-hand side of the
equations into block tridiagonal form for BTRI and such data transfer makes

15

LHSO highly memory-intensive. HPM examination of the DO loops
executing in singletasked mode indicated that 40% of the clock periods (CPs)
involve memory-related instruction hold issues, with an equivalent amount
of CPs spent waiting for the vector registers. The HPM further indicated that
most of the memory traffic involves writing and only a small percentage of
this traffic experienced memory conflicts. The HPM results mean that
memory instruction holds occurred because memory ports were busy or
vector registers were unable to clear quickly enough to allow transmission of
new data from the memory. The limited amount of computation contained
in these loops prevents calculation-related amortization of the memory delay.
The autotasker-produced parallel version of LHSO consists of processes which
execute identical code. The intensity of the memory traffic will produce CPU
hold issues for all the processors, as ATEXPERT predicted. Moreover, the
similarity of the memory access patterns should produce additional
degradation due to memory bank conflicts.

This examination of STAGE-2 parallel performance indicates that two factors
limit the current version: the load imbalance of the parallel solver and
memory access patterns in the implicit solution subroutines.

6.0 A More Parallel STAGE-2

Improvement of the parallel performance of the block solver would strongly
improve the parallel performance of STAGE-2. Section 5.1 discussed the
creation of a highly parallel scalar (HPS) version of the solver with ATSCOPE.
The figure below compares the speedup of STAGE-2 using the highly parallel
solver.

16

Speedups for Two Versions of STAGE-2

10 v T r T Y T v T -t
—a— MPV Version
8 I N
—o— HPS Version
. 6 .
3
°
o
o
Q
2] 4 -
1
2F -
O i 1 i 1 A 1 A L e
0 2 4 6 8 10

Number of CPUs

The HPS version used the highly parallel scalar version of the solver to
define a 1-CPU elapsed time. The 1-CPU parallel version of STAGE-2 requires
more time to complete the problem than the vector version of STAGE-2
because the solver performs in scalar mode. Thus, speedups measured
relative to the parallel version appear larger than those for the vector
version. Relative to its 1-CPU parallel version, the 8-CPU HPS version
displayed a 7.02 speedup with 98% of the code execution in parallel. However,
execution of the HPS version on 8-CPUs required 130 seconds while execution
of the MPV version on 8-CPUs required only 90 seconds. The results suggests
that the block solver limitations must be overcome with a different
algorithm.

A block cyclic reduction algorithm (Kumar, 1989) should generate improved
parallel performance, albeit at the cost of increased memory, increased
overhead for data rearrangements, and a variation in parallelism between the
reduction steps. However, the code could maintain its current serial format
and let the Cray autotasker generate the parallel code.

The STAGE-2 zonal approach could achieve a level of parallelism much
coarser than that of the DO loop. The partition of the STAGE-2 problem into
regions with varying degrees of mesh refinement resembles a Domain
Decomposition (DD). Classical DD methods divide a problem, usually
involving an elliptic operator, into smaller regions and paste the results
together. The regions can have overlapped and/or non-overlapped
boundaries and much of the DD effort emphasizes the treatment of

17

boundaries. Domain decomposition has been quite successful in attaining
high levels of parallelism, but STAGE-2 has several significant
differences from typical DD applications which could strongly affect the
parallel performance.

The STAGE-2 solution employs the Navier-Stokes operator in the viscous
regions and the Euler operator in the inviscid regions and the nonlinearities
introduced by these operators are not present in the usual DD linear
operators. The STAGE-2 transfer of boundary conditions via linear
interpolation differs from the more established procedures involving
iterative boundary condition transfers. The STAGE-2 partition involves
zones with differing numbers of mesh points and differing operator
characteristics. Table 1 shows that the subroutines performing calculations for
the 6 viscous zones (LHSI, MUTUR, VMAT, RHSI, VRHS, and MUKIN)
require almost twice as much CPU time as the subroutines performing
calculations for the 6 inviscid zones (LHSO and RHSO). This decomposition
could lead to load-balancing problems for high-level parallelism. Moreover,
STAGE-2 employs this decomposition to economize on central memory and
promote job turnaround, as opposed to utilizing multiple processors to
reduce elapsed time. Parallelism at the highest level, i.e., simultaneous
solution of all grids, requires that each process have its own copy of the block
solver. Conservation of scarce central memory would require
redimensioning of arrays in the solver and perhaps other subroutines as well.

The clean decomposition inherent in the current version of STAGE-2 would
make it a good test of high-level automatic parallelizing tool.

7.0 Conclusion

Application of the Cray Autotasker to the two-dimensional CFD code,
STAGE-2, has produced a parallel version which displays an 8-CPU speedup
of 5.0 relative to the vector version. The Cray Autotasker was able to generate
a version of the code which was 91% parallel. However, examination of code
performance with a CRAY utility, ATEXPERT, indicated two limiting factors
inherent in the code structure; an automatic parallelizing tool could not be
expected to reduce the impact of these factors.

One factor limiting the parallel performance of the code is the block
tridiagonal solver. The moderately parallel vector version created by FPP
displayed a severe load imbalance and the poor utilization of the CPUs by this
routine degraded STAGE-2 performance. Creation of a highly parallel scalar
(HPS) version of this solver with ATSCOPE allowed STAGE-2 to obtain a
speedup of 7.02 on 8 CPUs. While data dependencies forced the HPS solver to
operate in scalar mode and required an increased execution time for the
highly parallel STAGE-2, this example does illustrate the potential benefits of
a solution algorithm (such as block cyclic reduction) designed for parallelism.

A second factor limiting code parallel performance is the high intensity
memory traffic in subroutines performing the implicit calculation.This traffic
occurs as these routines prepare arrays for the block solver.

18

Manual intervention was required to assist the autotasker in scoping
variables and recognizing dependencies. Such required action suggests that
this code is a good test of the analytical capability of a low-level parallel
preprocessor. The high level zonal decomposition of the problem led to a
simple subscripting of array references and facilitated FPP dependency
analysis. This decomposition also enabled much of the computation to be
performed in easily parallelizable double DO loops suggests that STAGE-2
would be an excellent test program for a high-level automatic parallelization

tool.

19

8.0 References

Bailey, D. H., et al. 1991. “The NAS Parallel Benchmarks-Summaries and
Preliminary Results,”
In Proc. Supercomputer ‘91, pp 158-165.

Cray Research Inc. 1988. Cray Y-MP and Cray X-MP Multitasking
Programmer’s Manual, Pub. No. SR-022E, Cray Research Inc.,1988.

Cray Research Inc. 1991. UNICOS Performance Utilities Reference Manual,
Pub. No. SR-2040 6.0, Cray Research Inc.,1991.

Gundy, K., et al. 1989. “Two-dimensional Computations of Multistage
Compressor Flows Using a Zonal Approach,” AIAA-89-2452, Monterey CA.

Isaacson, I. and Keller, H. B. 1969. Analysis of Numerical Methods, p. 58,
Wiley, New York/London/Sydney, 1969.

Karp, A. and Flatt, H. P. 1989. “Measuring Parallel Processor Performance,”
Communications of the ACM, 33, 5 (May 1990) 539-543.

Kumar, S.P. 1989. “Solving Tridiagonal Systems on the Butterfly Parallel
Computer,”. International Journal of Supercomputing Applications, 3 (1)
Spring 1989, pp 75-81.

Kohn, J. 1989. “Autotasking Performance Expectations,”. Proceedings of the
Cray User Group, October, 1989, Bologna.

Pulliam, T. H. and Chausee, D. S. 1981. “A Diagonal Form of the Implicit
Factorization Algorithm,” Journal of Computational Physics, 39 (1981) 347-
363.

Stockdale, I. E., 1992. “Conversion of Program GAIL2D into a Parallel Code,”
forthcoming NAS Technical Report RND-92, Ames Research Center, Moffett
Field, CA, 1992.

Shen Z., et al. 1990. “An Empirical Study of Fortran Programs for Parallelizing
Compilers,” IEEE Transactions on Parallel and Distributed Systems, 1,3 (1990)
pp 356-364.

20

